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What do we know?
About NLP and Multimodal robustness

NLP Robustness

Random URLs
phrases to fool the model

CHECKLIST (Ribeiro et al., 2020)
Rule-based dilutions/distractions

                        (Naik et al., 2018; 
                         Ribeiro et al., 2020)
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Random URLs
phrases to fool the model

CHECKLIST (Ribeiro et al., 2020)
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                         Ribeiro et al., 2020)

About NLP and Multimodal robustness

What are plausible variations in

user-generated multimodal data? 4



Are multimodal classifiers robust to
user-generated plausible variations?

Goal

Our work: We introduce and study
robustness of multimodal classifiers to

cross-modal dilutions!

Research Question
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Several people lying
in hospital beds for

donating blood.

 Information from one modality is added to the other
corresponding modality (image → text), leading to dilution. 

Cross-Modal Dilutions
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Train a language model to
perform constrained generation
using image and text keywords
and encourage misclassification

Cross-Modal Dilution
Generator (XMD; Ours)
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Objects from scene graph

Cross-Modal Dilutions Generator (XMD)
Two-stage, multi-task adversarial fine-tuning

Proposed model:

Keywords from YAKE

Domain adaptation
model learns to generate

domain-specific text
from keywords

Adversarial adaptation
model learns to generate text

that could encourage
misclassification by the

multimodal classifier

Objects from Scene Graph
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How robust are multimodal classifiers?
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Datasets
Crisis Humanitarianism Dataset

(7,216 examples, 5 classes) 
(Alam et al., 2018; Ofli et al., 2020)
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(Duong et al., 2018)
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Crisis Humanitarianism Dataset

(7,216 examples, 5 classes) 
(Alam et al., 2018; Ofli et al., 2020)

Emotion Detection Dataset
(3,207 examples; 4 classes) 

(Duong et al., 2018)

Dilution Baselines
How do dilutions impact classification
performance?
    F1 score,
    Precision, 
    Recall, and
    Accuracy

How relevant are dilutions to...
    original text (BERT similarity)
    image (CLIP similarity)

Are generated dilutions topically
coherent?
    KL Divergence 

Are generated dilutions realistic?
    Human evaluation 
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are effective!

No major effect on
classification performance
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Results on Crisis Humanitarianism Dataset

Rule-based

Model-based

0.73

0.70

0.73

0.73

0.71

0.68

0.68

0.66

0.67

Our approach is most
effective; ~23% drop in F1!0.56
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How robust are multimodal classifiers?
And how well can we generate cross-modal dilutions?

Model-based

Results on Crisis Humanitarianism Dataset

Model-based

Most relevant and topically
coherent dilutions! 13



Most competitive
baseline (GPT-FT)

How robust are multimodal classifiers?
And how well can we generate cross-modal dilutions?

Human evaluation

For 78.5% of examples, the
majority of annotators consider

our dilutions to be better!

seen from above. entire california
communities reduced to ash.

the devastation in California: why
have entire communities either been
destroyed or reduced to a few bare

earth bare rock formation?

seen from above. entire california
communities reduced to ash.
it has caused communities to

distribute food due to the heavy rains
and fly out to neighboring counties

with their children. 

XMD (Ours)

Results on Crisis Humanitarianism Dataset
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Unmodified
multimodal post

How robust are multimodal classifiers?
And how well can we generate cross-modal dilutions?

Human evaluation

seen from above. entire california
communities reduced to ash.

the devastation in California: why
have entire communities either been
destroyed or reduced to a few bare

earth bare rock formation?

seen from above. entire california
communities reduced to ash.

 

Diluted using
XMD (Ours)

Results on Crisis Humanitarianism Dataset

Annotators fail to distinguish
diluted examples from

 unmodified examples!  
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Robustness of Fusion-based Multimodal
Classifiers to Cross-Modal Content Dilutions

Fusion-based
multimodal classifiers
are not robust to
realistic cross-modal
content dilutions

 

XMD: Method to
generate relevant and
realistic dilutions that
effectively highlight
vulnerabilities 

As multimodal learning
is used for AI for Social
Good applications, we
must think about its
robustness.

Consider not just imperceptible
but also plausible variations in
user-generated data!

Gaurav Verma, Vishwa Vinay, Ryan A. Rossi, and Srijan Kumar
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gverma@gatech.edu
 

Project Webpage: claws-
lab.github.io/multimodal-robustness/

with Code and Colab notebook
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