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Fusion-based Multimodal Classifiers

Family moumns 11
dead after church
falls at baptism during
Mexico earthquake.

—

Blood donation lines
in Tehranto help
earthquake survivors
in west of Iran.

Humanitarian

information in crises

Alam et al,, 2018
Ofli et al., 2020

Safety-critical Applications

Prince William may
not attend wedding
leaving Harry
without a best man.

Selena Gomez says
she'll protect her
children like noone's
business.

Fake news and hate
speech detection

Shu etal, 2018
Kiela et al., 2020

If you believe in life
after death
trespass here...

Someone have been
throwing these into
water near my home.

Emotional indicators
for mental health

Duong et al., 2018
Xu et al., 2020


https://docs.google.com/spreadsheets/d/1DUF2isFWsqVSYhbaACYtbgcLi_YjDqpE3GLQIVgkKQg/edit#gid=69851113
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Blood donation lines
in Tehranto help
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in west of Iran.

Several people lying
in hospital beds for
donating blood.
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in hospital beds for
donating blood.
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About NLP and Multimodal robustness
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CHECKLIST
Rule-based dilutions/distractions
e Random URLs
e phrases to fool the model
(Naik et al., 2018;
Ribeiro et al., 2020)
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CHECKLIST (Ribeiro et al., 2020)
Rule-based dilutions/distractions
e Random URLs
e phrases to fool the model
(Naik et al., 2018;
Ribeiro et al., 2020)
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Imperceptible unimodal changes
(Li et al., 2020; Chen et al., 2020)

Adversarial examples for VQA
(Sheng et al., 2021; Li et al., 2021)

Imperceptibility doesn't constrain the plausible
action space in human-facing applications.
(Gilmer et al., 2018)



What do we know?
About NLP and Multimodal robustness

Ed NLP Robustness ‘T/Q Multimodal Robustness
CHECKLIST (Ribeiro et al., 2020) ® Imperceptible unimodal changes
Rule-based dilutions/distractions (Li et al., 2020; Chen et al., 2020)
e Random URLs
e phrases to fool the model Adversarial examples for VQA
(Naik et al., 2018; (Sheng et al., 2021; Li et al., 2021)

Ribeiro et al., 2020)

Imperceptibility doesn't constrain the plausible
action space in human-facing applications.
(Gilmer et al., 2018)

What are plausible variations in
user-generated multimodal data?



Goal

Are multimodal classifiers robust to
user-generated plausible variations?

Research Question

Our work: We introduce and study
robustness of multimodal classifiers to
cross-modal dilutions!



Cross-Modal Dilutions

Information from one modality is added to the other
corresponding modality (image — text), leading to dilution.

Blood donation lines

Blood donation lines in Tehran to help
in Tehranto help earthquake survivors
earthquake survivors inwest of Iran.
in west of Iran. Several people lying
in hospital beds for

donating blood.
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Desirable Properties of
Cross-Modal Dilutions

Relevance with text

Relevance with image

Flu (> nt Blood donation lines
in Tehranto help

Effective earthquake survivors

in west of Iran.

Several people lying
in hospital beds for
donating blood.
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Different Approaches for Dilutions

(Cross-modal dilutions & text-only)

Simple Dilutions

e Random URL
e Keywords from
o Image
o Text
o both Image and Text
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Cross-Modal Dilution
Generator (XMD; Ours)

Train a language model to
perform constrained generation
using image and text keywords
and encourage misclassification

seen from above. entire california
communities reduced to ash.
the devastation in California: why
have entire communities either been
destroyed or reduced to a few bare
earth bare rock formation?
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Cross-Modal Dilutions Generator (XMD

Two-stage, multi-task adversarial fine-tuning

Base generation model: hard-constrained generation model trained on Wikipedia (Zhang et al., 2020)
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How robust are multimodal classifiers?

And how well can we generate cross-modal dilutions?

Datasets

Crisis Humanitarianism Dataset

(7,216 examples, 5 classes)

(Alam et al., 2018; Ofli et al., 2020)
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(3,207 examples; 4 classes)
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GPT-2
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XMD (Ours)

How do dilutions impact classification

performance?
F1score,
Precision,
Recall, and
Accuracy

How relevant are dilutions to...
original text (BERT similarity)
image (CLIP similarity)

Are generated dilutions topically
coherent?
KL Divergence

Are generated dilutions realistic?
Human evaluation
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How robust are multimodal classifiers?

And how well can we generate cross-modal dilutions?

Results on Crisis Humanitarianism Dataset
CLASSIFICATION PERFORMANCE |

= F1 Score

Original 0.73

Rule-based
Random URL 0.70 No major effect on
mage K P
Text K classitication performance
Text + Image KW with rule-based
Model-based
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Model-based baselines
are effective!

Our approach is most
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How robust are multimodal classifiers?

And how well can we generate cross-modal dilutions?

Results on Crisis Humanitarianism Dataset
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How robust are multimodal classifiers?

And how well can we generate cross-modal dilutions?

Results on Crisis Humanitarianism Dataset
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How robust are multimodal classifiers?

And how well can we generate cross-modal dilutions?

Results on Crisis Humanitarianism Dataset

seen from above. entire california
communities reduced to ash.

seen from above. entire california
communities reduced to ash.

it has caused communities to the devastation in California: why
distribute food due to the heavy rains have entire communities either been
and fly out to neighboring counties destroyed or reduced to a few bare
with their children. earth bare rock formation?
Most competitive XMD (Ours)

baseline (GPT-FT)

Human evaluation

For 78.5% of examples, the
majority of annotators consider

our dilutions to be better! 14



How robust are multimodal classifiers?

And how well can we generate cross-modal dilutions?

Results on Crisis Humanitarianism Dataset

seen from above. entire california
communities reduced to ash.
the devastation in California: why
have entire communities either been
destroyed or reduced to a few bare
earth bare rock formation?

seen from above. entire california
communities reduced to ash.

Unmodified Diluted using
multimodal post XMD (Ours)

Human evaluation

Annotators fail to distinguish
diluted examples from

unmodified examples! 15
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Classifiers to Cross-Modal Content Dilutions Vyl 2022

Gaurav Verma, Vishwa Vinay, Ryan A. Rossi, and Srijan Kumar

As multimodal learning
Is used for Al for Social
Good applications, we
must think about its
robustness.

Consider not just imperceptible
but also plausible variations in
user-generated datal!

XMD: Method to \.. Fusion-based
% generate relevant and ":',: multimodal classifiers
realistic dilutions that are not robust to
effectively highlight realistic cross-modal
vulnerabilities content dilutions

gverma@gatech.edu

Project Webpage: claws- '{I
lab.github.io/multimodal-robustness/ [w] Al O 0
with Code and Colab notebook b
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